
Macro Cell Placement and Routing

Chapter 3

Macro Cell Placement and Routing

3.1 Introduction

In this chapter, we present algorithms for the placement and routing of rectilinearly

shaped macro cells. Large complex logic functions such as datapaths, arithmetic logic

units (ALUs), and random access memory (RAM) are most efficiently implemented using

the macro cell design style. The macro design style closely resembles the hand placed cus-

tom design style; like custom design, macro cells are very area efficient. However, global

and detail routing are more difficult than row-based styles.

We present the TimberWolfMC (TimberWolf Macro Cell) program which performs

floorplanning, placement, and global routing of macro cells. Both hard macros (cells with

fixed geometries including pin locations) and soft macros (cells which have undetermined

characteristics such as aspect ratio, shape, and pin placement) are supported. In addition,

the user may specify several possible versions for a cell. For example, a 1k x 16 bit RAM

may be implemented using different multiplexers and decoders. Each implementation

yields a different aspect ratio and shape. Yet, all are functionally equivalent. The Timber-

WolfMC package is the only program to simultaneously address all constraints during

placement.

3.2 Previous Work

There have been numerous algorithms proposed to solve the placement problem.

Placement algorithms may be broadly divided into four categories: constructive, iterative,

analytical, and esoteric algorithms. Constructive algorithms selectively add one cell at a

51

Macro Cell Placement and Routing

time to the placement based on an evaluation or score function. The score function mea-

sures the degree of connectivity to the cells which have been placed. The cell with the best

score is placed at the position which minimizes total wire length. This process continues

until all cells are placed. Speed is the constructive algorithm’s main advantage (time com-

plexity). However, constructive algorithms often are stuck in local minima which

are quite far from the global minimum and hence they usually yield rather poor results.

Their speed does make it useful as an initial placement for an iterative algorithm. Hanan

first applied constructive algorithms in 1972 [83]. Recently, Sutanthavibul and Shragowitz

have augmented the constructive placement algorithm to handle timing constraints

[217][218].

 Iterative algorithms improve an initial placement by modifying the configuration. Iter-

ative algorithms constitute the largest class of placement algorithms. This class can be fur-

ther subdivided into deterministic and stochastic algorithms. Among the deterministic

class are Steinberg’s algorithm, pairwise exchange algorithms, force-directed placement

and its variants, and the family of mincut bipartitioning algorithms. The stochastic algo-

rithms include simulated annealing, simulated evolution, and the genetic placement algo-

rithms.

Steinberg’s algorithm partitions the netlist into independent sets [213]. The indepen-

dent sets contain cells without common nets. The algorithm iteratively selects a set of

independent cells, removes them from the placement, and computes the cost of replacing

them in each of the available slots. Because these costs are independent of the location of

the other cells in the independent set, an optimum assignment of cells to slots can be found

solving the resultant linear assignment problem1. Although each independent set may be

assigned optimally, it is not guaranteed that the total placement will be optimal.

1. Assuming equal width cells.

O n()

52

Macro Cell Placement and Routing

The pairwise interchange method begins with an initial cell placement. During each

iteration, two cells are selected and trial interchanged. If the interchange does not increase

the wire length, the exchange is accepted; otherwise, the move is rejected and the cells

restored to their original positions. If there are n cells in the layout, exchanges are

attempted in a cycle. Interchanges continue until no improvement in wire length is made in

a cycle. The closely related neighborhood interchange algorithm only exchanges cells in

the vicinity of each other.

In force-directed algorithms, a force vector is computed for each cell c, and

(3.1)

where is the edge weight connecting cells c and i, and is the vector distance from c

to i. The force vector is used to calculate the target position for the cell c. The target posi-

tion is the location where the sum of all forces on the cell equals zero. Cells may be

relaxed to zero force target position in many ways: force-directed pairwise interchange

(FDPI), force-directed pairwise relaxation (FDPR), and generalized force-directed pair-

wise relaxation (GFDR) [77].

In a force-directed pairwise interchange algorithm, the force on a cell is computed and

trial interchanged with each of its three neighbors in the direction of the force vector. If the

wire length is reduced, the interchange is accepted.

In the force-directed pairwise relaxation method, a cell a is selected and its target loca-

tion calculated. Another cell b is selected with the following criteria: it is within distance

of a’s target slot, and its own target is within of a’s original location. Cells a and b are

trial interchanged. If the wire length is reduced, the interchange is accepted.

Generalized force-directed pairwise relaxation attempts to interchange more than two

cells at the same time. If the interchanges are performed on random subsets of cells, the

O n2()

Fc

Fc aci dki⋅
i

∑=

aki dki

ε

ε

53

Macro Cell Placement and Routing

improvement in solution quality will not compensate for the large increase in computation

time. Instead, the GFDR method selects trial interchanges for subsets of cells which have

a high probability for success.

The mincut family of algorithms are used extensively in industry. They are based on

the partitioning algorithm presented by Kernighan and Lin [108]. In this algorithm, the

goal is to divide a netlist into two parts such that the number of nets connecting the two

parts is minimum. The number of nets interconnecting the partitions is known as the cut

value of the partition. The Kernighan and Lin algorithm assumes every cell is the same

size, and every net connects to exactly two cells.

The algorithm starts with an initial arbitrary partition with half the cells in partition A

and half in partition B. The gain g is calculated for all pairs of cells between partitions.

The gain is the increase in the cut value when two cells are exchanged between partitions.

One cell from each partition is selected such that the interchange of the cells results in the

minimum gain (or maximum reduction) in cut value. Once interchanged, the cells are

locked or forced to remain in their new partition for the remainder of a pass. A pass is a

total exchange of all cells. During a single step in a pass, the two unlocked cells with min-

imum gain are chosen for the exchange. At the end of a pass, all cells initially in A have

been moved to B, and those originally in B have been transferred to A resulting in a net

gain of zero, or

. (3.2)

From Equation 3.2, we see that either some of the are negative, or all terms are zero.

In order to maximize the total decrease in cut value, the Kernighan and Lin algorithm

selects the k such that

gi
i 1=

N

∑ 0=

gi

54

Macro Cell Placement and Routing

(3.3)

is a minimum. Cells are transferred to partition B, and cells are

transferred to partition A ending a pass. Passes are performed until

. (3.4)

Although some of the individual exchanges may have increased the cut value, the total

decrease in cut value is a maximum. This was the first partitioning or placement algorithm

which allowed uphill moves in an attempt to escape from a local minimum.

The partitioning algorithm may be used as a placement algorithm by recursively partition-

ing the cells into two equal halves until only one cell is in each partition. Breuer proposed

a wide variety of partitioning strategies based on recursive partitioning [16].

Schweikert and Kernighan extended the partitioning algorithm to handle nets with

more than two connections [194]. In 1982, Fiduccia and Mattheyses reduced the time

complexity from , where N is the number of cells, to , where P is the

number of signal pins [64]. Their method exchanges only single cells. In addition, they

added constraints to control differences in cell sizes. Although Dunlop and Kernighan

found that the quality of the Fiduccia and Mattheyses algorithm does not always equal that

of the Kernighan and Lin method, the linear time complexity makes it attractive for large

designs [56].

The major drawback with recursive bipartitioning as a placement procedure is the parti-

tioning of a set of cells at one level of the hierarchy ignores connections to cells in other

gi 1 k N≤ ≤,
i 1=

k

∑

a1 a2 ... ak, , , b1 b2 ... bk, , ,

gi 0 k∀ 1 ... N, ,{ }∈,≥
i 1=

k

∑

O N2 Nlog() O P()

55

Macro Cell Placement and Routing

levels. In Figure 3.1, we see that recursive partitioning without regard to other levels of

hierarchy often leads to nonoptimal placements.

In response to this problem, Dunlop and Kernighan proposed terminal propagation to

improve mincut placement. In order to properly bias cells in future partitioning steps, a

propagation pin p is added to account for cells outside the partition. The propagation pin is

centered on the boundary of the partition. Dunlop and Kernighan reported that terminal

propagation reduced the chip area by an average of 30 percent, a substantial savings [56].

pin 5

pin 4

pin 3

pin 2
pin 1

L1

L2

R2

R1

Figure 3.1 Recursive partitioning ignores connections in other levels. At the first level, the design is
partitioned into L and R. During the partitioning of L into L1 and L2, pins 1 and 2 are assigned to
partition L2. It is possible for pins 3, 4, and 5 to end up in partition R1

pin 5

pin 4

pin 3

pin 2

pin 1

L1

L2

R2

R1

pin p

Figure 3.2 Recursive partitioning using terminal propagation. The addition of pin p biases the
placement of pins 3, 4, and 5.

56

Macro Cell Placement and Routing

Suaris and Kedem extended the concept of terminal propagation to quadrisection

[214][215][216]. Mincut quadrisection involves simultaneous partitioning along horizon-

tal and vertical lines. The number of net crossings across all divisions is minimized.

Using a polar graph representation for macro blocks, Lauther was able to adapt the

mincut algorithm to place blocks of any rectilinear size [127]. Later, Mayrhofer and Lau-

ther extended the quadrisection concept to multiple partitions and added a congestion met-

ric using Steiner trees [146]. Many systems such as the BEAR building-block system use

variants of recursive mincut in macro floorplanning tools [47].

Stochastic algorithms fill the other important subclass of iterative algorithms. Stochas-

tic algorithms randomly perturb the current state searching to discover a better solution.

Simulated annealing, genetic, and simulated evolution placement algorithms are the most

important members of the class. Simulated annealing was first applied to macro cell place-

ment by Jepsen and Gelatt [101]. Wong and Liu introduced Polish notation to speed the

search, but their method does not allow overlap during the annealing process[238][239].

In our experience with row based circuits, we found overlap during annealing leads to sub-

stantial area savings[201]. Siarry et al. analyzed simulated annealing for the idealized

macro cell case in which all nets interconnect only two pins[209]. There have been several

reports of parallel versions of simulated annealing for macro cells [26][178]. None of

these systems dynamically estimated the routing area needed around the cells, included a

placement refinement stage, or had the range of features offered by TimberWolfMC.

In genetic algorithms, a population of solutions to the problem is maintained, and suc-

cessive generations are produced by manipulating the solutions in the current population.

Each solution has a fitness which measures its competence. New solutions may be created

from the merging of two current solutions using the crossover operator. Other solutions

are formed by randomly mutating current solutions. Successive generations are produced

with new solutions replacing some of the older ones based on the relative fitness values. A

57

Macro Cell Placement and Routing

heuristic terminates the algorithm, and the best solution is reported. Cohoon et al. applied

the genetic algorithm to floorplan design [37]; Shahookar and Mazumder applied it to

standard cell placement [205].

Simulated evolution is similar to genetic placement algorithms. However, there are

important differences. While the genetic placement method maintains many total solu-

tions, the simulated evolution method generates only one child from each parent during

each generation. In addition, the methods for selection are quite different. In genetic place-

ment, a random set is chosen for mutation or crossover, and its fitness calculated. In simu-

lated evolution, each individual cell’s goodness or fitness determines whether it survives

in its current location. This method has been applied to the standard cell placement prob-

lem [114][115][116].

Evolution occurs at the individual level; each individual struggles to propagate its

gene pool. There is no regard for what is best for a society. By analogy, simulated evolu-

tion mimics biological evolution more realistically than genetic placement algorithms.

Simulated evolution is claimed to have better convergence properties than genetic place-

ment algorithms.

Analytical algorithms mathematically calculate the positions of the cells from the net-

work description. Results are optimal with respect to the cost function, an important

advantage of mathematical algorithms. However, no one has been able to formulate a

mathematical model which accurately predicts chip area. Most analytical models use the

squared wire length model (rather than the more realistic Manhattan model) since it has

continuous first and second derivatives [79],

(3.5)

where is the number of connections between cells i and j. This can also be rewritten as

L cij xi xj–() 2 yi yj–() 2+()
i j, 1=

n

∑=

cij

58

Macro Cell Placement and Routing

(3.6)

where

(3.7)

and D is a diagonal matrix with

. (3.8)

This cost formulation is also associated with the quadratic assignment problem. Hanan

and Kurtzberg used the quadratic assignment method to solve the placement problem [83].

Although quadratic assignment uses Equation 3.5, it does not exploit the convexity of the

function. Mathematical optimization techniques work best when both the domain and the

cost function are convex. In this case, only a single global minimum of the cost function

exists, and it is possible to find the global minimum by using gradient techniques. The jus-

tification for using the quadratic metric for placement was given by Fukunaga et al. [69].

Using a state space approach, the placement is determined by the eigenvectors corre-

sponding to the two smallest eigenvalues.

However, it is difficult to map the solution eigenvectors back into the physical domain

and to account for finite size components which may not overlap. Cheng and Kuh modeled

the cells and the interconnect as a resistive electrical circuit and used relaxation techniques

to solve the circuit [30]. They needed to add additional slot constraints to avoid the trivial

solution of all cells on top of each other. The PROUD and RITUAL placement systems

solved Equation 3.5 using Successive Over-Relaxation and residual iterative update of

Lagrange multipliers, respectively [227][212]. The method has also been augmented to

handle timing constraints using nonlinear programming techniques [100]. Dynamic pro-

gramming has also been proposed as a method to map the components [90]. Blanks used a

two-step procedure to map the ideal global placement onto the layout surface without vio-

xTBx yTBy+=

B D C– C, cij[]= =

dii cij
j 1=

n

∑=

59

Macro Cell Placement and Routing

lating any constraints [15]. Sha et al. encoded all of the constraints into the objective func-

tion eliminating the need for mapping [203][204]. Frankle and Karp used a multi-

dimensional method which combined eigenvector probes and linear assignment to direct

the mapping [67]. Gordian used partitioning stages to untangle the ideal placement [113].

A later Gordian version used a modified form of the quadric metric to represent a linear

metric [210]. They found that the pseudo-linear metric yielded area improvements of up

to 20% over the quadratic method.

Other mathematical methods that use linear programming (LP) have also been pro-

posed. Mogaki et al. presented a LP algorithm for macro cells which incorporated con-

straints on block size, relative position, and width of the inter-block routing space [155].

Linear programming techniques are CPU intensive and limited by the size supported by

the LP solver.

Closely related to the analytic methods is branch-and-bound placement. This method

is guaranteed to find the optimal solution. The branch-and-bound method prunes the deci-

sion tree containing all placements. If an accurate bound is known for the placement cost,

placements exceeding the bound may be pruned from the search space resulting in large

reductions in computation time. However, accurate bounds require length computations.

This method is extremely time consuming because it requires determining accurate

bounds or exploring large number of branches in the decision tree. It has only been applied

successfully to small problems. Onadera applied a mixed mincut / branch-and-bound algo-

rithm to macro cell placement [165].

Esoteric algorithms are derived from recent advances in other related fields. Placement

algorithms based on neural networks and fuzzy logic have been proposed. Libeskind-

Hadas and Liu solved a macro cell orientation and rotation problem using the Hopfield

and Tank model of neurological networks [139]. In this model, a neuron computes a

monotonically increasing sigmoidal output function from a weighted set of inputs. The

60

Macro Cell Placement and Routing

input weights are used to model the number of interconnections between cells. The place-

ment problem is solved by simulating the neural network.

Lin and Shragowitz applied fuzzy logic to a constructive placement algorithm [140].

Fuzzy logic assigns a probability for an object belonging to a set. This algorithm used the

mathematics of fuzzy sets to avoid local minimums obtained with strict constructive algo-

rithms.

Although many claims have been made to the contrary, none of the algorithms above

have been shown to outperform simulated annealing in terms of final chip area. The Tim-

berWolf system has continued to produce the best results on the MCNC benchmark set of

placements. None of the other algorithms have been found to be as robust over the many

design methodologies. Most of the placement algorithms ignore timing performance. No

other algorithm has been proposed which minimizes area and guarantees timing perfor-

mance. For these reasons, simulated annealing is the basis for the TimberWolf macro cell

placement algorithm.

3.3 Macro Cell Placement and Routing Algorithm

Our placement algorithm is based on simulated annealing and proceeds in two distinct

stages. During the first stage, the interconnect area around each of the macro cells is

dynamically estimated. That is, the cell area is modified as a function of position [195]. In

the second or placement refinement stage, the routing area estimates are replaced by the

density information obtained from global routing. The placement refinement stage con-

sists of several executions of the following three steps: (1) channel definition, (2) global

routing, and (3) macro cell spacing. The information obtained in the second step is used to

compute the density of all of the channels, which then allows accurate spacing of the

macro cells. Detailed routing is then performed on all channels simultaneously using the

information from the global routing step to guide the router into the correct regions.

61

Macro Cell Placement and Routing

TimberWolfMC, an implementation of the simulated annealing algorithm for macro

cell placement was reported in 1988 [195]. Its main objective was to achieve the best

results while possibly sacrificing computation time. Another objective was to develop a

flexible and extensible placement and routing package which would be applicable to state-

of-the-art industrial circuits. TimberWolfMC version 1.0 yielded area savings ranging

from 8 to 49 percent versus numerous automatic and manual layout methods. However,

large computation times were required in order to achieve reproducible high quality

results. In addition, version 1.0 did not include a detailed routing algorithm.

While the performance of TimberWolfMC was encouraging, the need for a much

faster placement algorithm was apparent. We therefore, completely reexamined the imple-

mentation of the simulated annealing algorithm. In particular, we improved the generation

of new configurations function, the cost function, and the annealing schedule. The new

approach focuses on: (1) selecting those potential new configurations which have a higher

probability of acceptance, (2) minimizing the impact of the penalty functions, (3) normal-

izing problems of various grid sizes and cell counts, and (4) utilizing the results of a theo-

retically derived statistical annealing schedule developed by J. Lam [125][126]. The new

placement algorithm, part of TimberWolfMC version 2.0, requires 10 to 20 times less

CPU time than version 1.0, while achieving placements of the same quality. In fact, it is

now possible to achieve the best possible results from TimberWolfMC for the ami33

benchmark circuit in about 5 minutes on a SUN 4/260.

New features have been added to increase functionality and usability but decrease exe-

cution time. TimberWolfMC now features timing driven placement. Cells may be grouped

hierarchically. Cells and/or cell groups may be restricted to subregions within the core

region. Also, through the use of the X11R3-X11R5 graphics interface, the user may inter-

rupt the automatic execution at any time to add region restrictions or to place macros at

specific locations. TimberWolfMC also features a sophisticated I/O placement algorithm

62

Macro Cell Placement and Routing

which places the pad cells to minimize wirelength subject to side, spacing and pad group-

ing constraints.

3.3.1 Cost function C

The TimberWolfMC cost function C consists of three terms. The first term is the total

wire length, represented by W. The second term is the overlap penalty function represented

by . The third and final term is the timing path penalty function . The complete

expression for the cost function is given by:

(3.9)

where the factors and determine the relative weighting of the three terms in the cost

function. The major changes to C include an improved function, the inclusion of the

timing path penalty, and an improved method for determining the values of and .

3.3.1.1 Total Wire Length

Since the final wire length of each net cannot be determined until detailed routing is

complete, the wire length of each net is estimated in the placement stage. The wire length

of a net is estimated as the half perimeter of the minimum rectangle that encompasses the

net [76]. , are the length and height of the minimum rectangle, respectively.

A minimum rectangle of a 3-pin net is shown in Figure 3.3. Such a minimum rectangle

shall be referred to as the min-rectangle of a net. The total wire length can then be

expressed as

(3.10)

where n is the number of nets.

PO Pp

C W µPO λPp+ +=

µ λ

PO

µ λ

Sx n() Sy n()

W Sx n() Sy n()+
n

NN

∑=

63

Macro Cell Placement and Routing

To reduce the CPU time necessary to update W for large nets, we added an incremental

net-span updating scheme to TimberWolfMC.

3.3.1.2 The Overlap Penalty

In TimberWolfMC version 1.0, the CPU time required to update was reduced by a

bin scheme in which the core area was divided into a set of two-dimensional nonintersect-

ing bins. When it had to be determined which cells overlapped with a given cell, the

search could have been restricted to a local region. But for large circuits, the CPU time

necessary to update was larger than the time required to update the remaining terms of

the cost function [196].

The new strategy again uses a bin scheme. However, in this case the bins are used to

keep track of the total cell area intersecting each bin. The total bin area, where the area of

bin b is represented by A(b), is set equal to the core region area . The core region area is

determined by summing the areas of each dynamically expanded cell (which accounts for

the estimated routing area [195]),

The estimated wire length for this net in the x-direction

The estimated
wire length
for this net in
the y-direction

Figure 3.3 The minimum rectangle that encompasses this three-pin net.

PO

PO

AT

64

Macro Cell Placement and Routing

(3.11)

where is the number of cells, is the area of cell c, is the number of bins, and

 is the area of bin b.

The penalty applied to each bin b is the absolute difference between the bin area

and the total cell area intersecting the bin . The total overlap penalty is just

the square root of the sum of the overlap penalties for all bins:

(3.12)

Note that the units of are linear with respect to the specified grid size of the cell

data. Our experiments have shown that in order to effectively optimize the choice of and

 in Equation 3.9, it is important that all terms in the cost function scale uniformly with

respect to grid size.

If the bin size chosen is too large, cells may have significant overlap within a bin with

zero or near zero penalty. This problem can be eliminated by choosing a very small bin

size. However, this increases the CPU time since the penalty for many bins has to be

updated whenever a cell moves. Our experiments indicated that the best compromise was

to select the bin width and height to be one-half of the average of the shortest dimension of

all the cells (including the estimated routing area). In this manner, cells will typically

cover at least four bins. More formally, the average of the shorter sides is expressed as

follows, where is the width of the bounding box of the cell c and is the

height:

(3.13)

T A c()
c 1=

Nc

∑ A b()
b 1=

Nb

∑= =

Nc A c() Nb

A b()

A b() Ac b()

PO Ac b() A b()–
b 1=

Nb

∑=

PO

µ

λ

SS

w c() h c()

SS
min w c() h c(),{ }

c∀=

65

Macro Cell Placement and Routing

Therefore, the area of the uniformly sized bins is given by:

(3.14)

This choice of bin area statistically minimizes the inaccuracies which occur if two

cells are placed on top of one another in the same bin without incurring large execution

time penalties.

An example of an overlap calculation is shown in Figure 3.4.

Note that this function can be updated by adding or subtracting the cell area from only

the bins that the cell spans. The CPU time necessary to update is now a negligible por-

tion (< 2%) of the total time necessary to update C for each new configuration.

The value of (in Equation 3.9) strongly impacts the quality of the final configuration

obtained by the simulated annealing algorithm. We found that the optimum value of

varied from circuit to circuit. Attempts to find a relationship for as a function of circuit

size, grid size, and/or the average changes in W versus the average changes in were not

successful.

A b()
SS

2

4
-----=

cell 1

cell 2

cell 3

Area A1

bin b

Area A2

Area A3

Figure 3.4 The bins for calculating the overlap penalty. The overlap penalty for bin b is
.A1 A2 A3 A b()–+ +

PO

µ

µ

µ

PO

66

Macro Cell Placement and Routing

It is apparent that at the end of the execution of simulated annealing we desire the min-

imum value of (or) to be zero. However, for real circuits with widely varying

cell areas, even a value of equal to zero does not guarantee the absence of cell overlap-

ping. For example, a bin might contain two cells whose aggregate area equals the bin area,

but the positions of the cells might be such that they overlap significantly. Hence, any

residual overlap penalty at the end of the simulated annealing run is removed by spacing

the macro cells using a compaction algorithm. This final clean-up step results in some

increase (or jump) in the value of W as shown in Figure 3.5.

We have observed that there is an optimum amount of this jump in W after spacing the

cells. If the overlap is penalized strongly (using a large value of µ), then the amount of the

jump is very small. However, we observed that the final values of W (or Wf) are usually

quite far from the lowest obtainable. On the other hand, if the overlap is very lightly penal-

ized (using a small value of µ), then the value of W approaching the last iteration is very

small comparatively. However, after the clean-up step, the amount of the jump is quite

large leading to a poor value of Wf. In an effort to find the optimum value of µ, we mea-

sured many industrial circuits and obtained the normalized results shown in Figure 3.6.

The value of Wf in this figure was obtained after the clean-up step, that is, after the jump. It

PO POmin

PO

Wf

W

1 Imax

Wirelength

Iteration

jump

Figure 3.5 The jump in total wire length after spacing (or compaction).

67

Macro Cell Placement and Routing

is interesting to note that a nonzero (positive) value of which causes an appreciable

jump in Wf yields the lowest possible value of Wf. We consistently observed the best per-

formance when the final value of (or) was approximately . Therefore, at

the last iteration (),we desire the target value of the overlap penalty to be

.

The functional form for was derived empirically. First, we determined the constant

value of µ which yielded the best solution for a given circuit while monitoring the overlap

penalty as a function of time. The form of was then obtained by least-squares fit of

the best data over 10 industrial circuits. The best fit over all the circuits was found to be:

(3.15)

where

We then devised a negative feedback control function which seeks to adjust the value

POmin

PO POmin
0.4 AT

Imax

O
T Imax() 0.4 AT=

Normalized
Final Wirelength

1.0

0.7

0.5 AT 1.0 AT
POmin

Figure 3.6 Normalized total wire length versus final overlap penalty.

PO
T I()

PO
T I()

PO
T I() A BI CI2 DI3+ + +() AT=

A 0.85=

B 1.6
4–×10–=

C 4.3
6–×10=

D 1.2
7–×10–=

68

Macro Cell Placement and Routing

of dynamically throughout the simulated annealing run so as to achieve the desired func-

tional form for all runs of all circuits. The negative feedback control function yielding the

value of µ at iteration I, or µI, is given by

(3.16)

where K is a damping factor used to stabilize the control of the values of µI (in our imple-

mentation, a very suitable value of K is). At the end of iteration I, if

, then µ is increased somewhat for the next iteration forcing the simulated

annealing algorithm to put more emphasis on reducing the overlap penalty. Conversely, at

the end of iteration I, if , then µ is decreased somewhat for the next itera-

tion, thereby allowing the simulated annealing algorithm to put more emphasis on

decreasing the total wire length term W.

Figure 3.7 shows the results of a typical run of the MCNC benchmark circuit ami33

versus the target penalty. The graph clearly shows the negative feedback control correct-

ing the emphasis paid to the overlap penalty in order to achieve optimal results.

Equation 3.15 has been tested on more than 30 industrial circuits of widely varying

sizes. We have found that at for every trial.

3.3.1.3 The Timing Penalty

The third term in the cost function is the timing path penalty function which

insures timing correct placement. The user supplies an upper and lower bound on the time

delay for either a primary-input primary-output pin pair or specified critical path. Chapter

6 describes the timing penalty in detail. The total penalty is just the sum over all critical

paths:

µ

µI 1+ µI

PO I() PO
T I()–

K
---------------------------------------+=

O
T I()

PO I() PO
T I()>

PO I() PO
T I()<

O
T 0.4 AT≈ I Imax=

PT

69

Macro Cell Placement and Routing

(3.17)

Since TimberWolfMC insures that the sum of the time delays of the individual gates

and nets in the critical path meet the given bounds, there is no need for the user to partition

the path length between the individual signals of the path. Previously reported systems

have used net weights on individual nets in an attempt to achieve timing driven placement.

However, this is the first macro cell placement algorithm which features critical-path

driven placement. This method is superior to net weighting techniques because it over-

comes the partitioning problem and reflects more accurately the true timing constraints to

be satisfied.

A very large value of will surely satisfy all path length bounds (if they can be satis-

fied) but will result in poor values of . Conversely, too small a value of will yield

Figure 3.7 Overlap penalty as function of time for the ami33 benchmark circuit.

200150100500
0.4

0.5

0.6

0.7

0.8

0.9

1.0

overlap penalty

target penalty

Overlap penalty and target penalty versus time

Iteration

ov
er

la
p

pe
na

lty
 f

or
 a

 ty
pi

ca
l r

un

PT Pp
p 1=

Np

∑=

λ

Wf λ

70

Macro Cell Placement and Routing

very good values of but with many of the path-length bounds remaining unsatisfied.

We therefore, experimented to find a relationship for which did not degrade the chip

area and , but which nearly satisfies all the path constraints. Since the ratio of paths

specified to the total number of nets will vary from zero to a large number from circuit to

circuit and run to run, we had to ensure that the timing penalty term was felt, regardless of

its absolute value. The best results were obtained when we assigned

(3.18)

 where is the average change in wirelength and is the average change in the tim-

ing penalty measured during the first iteration.

This implies that the changes in the timing penalty are (in some sense) three times as

important as the changes in the wirelength.

Below are the results for a large industrial circuit with 1535 paths. The value of

and the chip area were the same as that obtained without the critical path specifica-

tions.

Table 3.1 Timing results for a large industrial circuit with 1535 paths.

As one can see, the algorithm successfully satisfies the timing constraints without deg-

radation of chip area.

Criteria Number of paths Percentage of total paths

within specification 1359 88

0 - 10% above spec. 112 96

0 - 20% above spec. 64 100

above 20% 0 -

Wf

λ

Wf

λ 3
∆W

∆Pp

----------⋅=

∆W ∆Pp

Wf

71

Macro Cell Placement and Routing

3.3.2 The Improved New State Selection Procedure

Our improved scheme of selecting new configurations makes use of the bin mecha-

nism described in Section 3.3.1.2. The center of each cell is hashed to a particular bin. The

new procedure is as follows: Cell a is randomly selected from the set of all cells. We then

randomly select a new location within the range limiter window. (The range limiter win-

dow size is designed to increase the acceptance rate at a given temperature. The changes in

wire lengths are on the order of the move distance. Therefore, reducing the move distance

yields smaller wirelength changes resulting and thus an elevated acceptance rate.) The bin

which includes this position is noted. If the bin is empty, then the proposed new configura-

tion is obtained by performing a single-cell move to the new location. On the other hand,

if the bin is not empty, a cell b is randomly selected from among those cells belonging to

this bin. A proposed new configuration is obtained by interchanging cells a and b.

This new method never places a cell directly on top of another cell generating far

fewer new configurations which could otherwise increase the overlap penalty function

. In turn, this savings yields a lower value of µ (in Equation 3.9) and allows the simu-

lated annealing algorithm to put more emphasis on decreasing the total wire length term

W. Therefore, improved placement results are typical.

3.3.3 Stage 2 Placement Refinement

Until now, we have focused on the first stage of the placement algorithm. Now, we

turn our attention to the second or placement refinement stage where the routing area esti-

mates are replaced by the density information obtained from global routing. In Figure 3.8,

we see a small example at the end of stage one. At this stage, the wirelength has been min-

imized but there is still some residual overlap. In the example, cell C3 overlaps C1. Note

that cell C5 is an eight-sided rectilinearly shaped cell.

PO

72

Macro Cell Placement and Routing

Figure 3.8 Results at the conclusion of stage 1 of the placement algorithm. The darkest regions are
cells and the lighter shaded regions are estimated wiring areas.

C2

C3

C1
C5

C4

Figure 3.9 Placement after removal of overlap.

C4

C1

C3

C5

C2

73

Macro Cell Placement and Routing

In this second stage, we remove any residual overlap between the macro cells while

seeking to minimize the disturbance to the rest of the placement. The purpose of this

cleanup step is to make it possible to form a channel graph, but it does not insure that the

placement is capable of being detail routed. Our small example would now appear as in

Figure 3.9. Cells C3 and C1 are spaced at the minimum design rule spacing. Any connec-

tions occurring in the small channel between these two cells would be infeasible.

We are now ready to begin placement refinement. The placement refinement stage

consists of several executions of the following three steps: (1) channel definition, (2) glo-

bal routing, and (3) macro cell spacing. The information obtained in step 2 is used to com-

pute the density of all of the channels, which then allows accurate spacing of the macro

cells.

3.3.3.1 Channel Graph Generation

Given a placement of macro cells, a critical region (Chapter 7 of [196] has a thorough

discussion on the subject), either horizontal or vertical, is defined as the common region

between pairs of cell edges or between a cell edge and a boundary of the chip. Figure 3.10

shows some examples of critical regions. Nets are routed through these regions. It should

74

Macro Cell Placement and Routing

be clear that critical regions determine the spacing needed between two cell edges or

between a cell edge and a chip boundary.

A rectilinear channel graph is formed by passing edges (actually channels) through

critical regions and forming nodes at their intersections, as shown in Figure 3.11. Routes

Figure 3.10 The critical regions for the example circuit are shown as hatched rectangles for clarity.

75

Macro Cell Placement and Routing

of all the nets will be generated along the edges of the channel graph. Therefore, pins of a

net are mapped perpendicularly from the cells to edges of the channel graph.

3.3.3.2 Global Routing

Next we perform global routing on the channel graph. The new graph-based macro

cell global router Mickey [29] is net routing-order independent and allows two cost func-

tions: the minimization of the chip area and the minimization of the total wire length under

channel (or edge) capacity constraints. This global router minimizes the total wire length

implicitly, and calculates channel densities precisely. In addition, the execution time is

small relative to the stage 1 placement time, allowing many iterations of refinement with-

out penalty. Figure 3.12 shows the routing of a single multi-terminal net on the channel

graph.

3.3.3.3 Compaction

From the global routing, we calculate the routing density in each channel. In order

to space the cells correctly, we add routing area to each cell edge on a channel by channel

Figure 3.11 The channel graph for the previous example.

di

76

Macro Cell Placement and Routing

basis. For each of the two cell edges adjacent to channel i, routing space of width is

added where and is the minimum spacing between routing tracks. That

is, one half of the routing area of a channel is assigned to each of the two adjacent cell

edges. Each cell along with its routing area becomes a fairly complex rectilinearly shaped

cell. An example is shown in Figure 3.13.

The next phase is compaction of these cells to remove unnecessary space. By com-

pacting these cells, the placement takes into account the necessary routing area. An exam-

ple after compaction is shown in Figure 3.14.

Figure 3.12 An example of global routing on a channel graph. The thick line denotes the global
routing tree for a single net.

wi

wi

di 1+()
2

-------------------- ts⋅= ts

77

Macro Cell Placement and Routing

Figure 3.13 The addition of routing tiles to the cells after global routing.

Figure 3.14 The example in Figure 3.13 after compaction. New critical regions are shown.

78

Macro Cell Placement and Routing

3.3.3.4 Topology Preservation During Compaction

Since the placement may be modified by the compaction process, the channel graph,

and hence the global routing, may become invalid. Therefore, we repeat the placement

refinement process until convergence is achieved. After convergence, a global routing step

will be executed using the final channel capacity constraints. In this last step, the global

router is constrained by the placement of the macro cells and therefore, achieves a feasible

final routing.

However, this placement refinement method is not guaranteed to converge. It is possi-

ble that the channel graphs of two successive iterations of the refinement method will

never be isomorphic. In general, two nonisomorphic channel graphs will yield different

global routing areas, and therefore, different placements after compaction. Figure 3.15 and

Figure 3.16 show a small example before and after compaction. A comparison of the

channel graphs in Figure 3.17 reveals that the topology of the placement has changed.

Convergence has not been achieved.

Figure 3.15 Original channel graph (before compaction).

79

Macro Cell Placement and Routing

The solution is to use the channel graph during compaction to preserve the placement

topology. We use the following compaction strategy: For objects on the critical path, use

constraints derived from design rules to insure minimum size with respect to 1-D compac-

tion. For objects not on the critical path, we first determine the compaction constraints.

From the longest path calculation, we determine the valid window for an object. The

lower bound for the object window is a by-product of the longest path algorithm. The

Figure 3.16 Compaction results without channel graph constraints.

Figure 3.17 The topology changes. The left channel graph is the original topology. The channel graph
on right is the topology after compaction.

80

Macro Cell Placement and Routing

upper bound may be determined by a longest path search starting at the sink and searching

in the opposite edge directions [154]. If all components are within their respective valid

windows, all design rule constraints will be satisfied for objects off the critical path. Next,

determine the constrained placement window using the channel graph. The constrained

window is calculated by stretching or shrinking the channel graph in the direction of com-

paction to equal the length of the longest path. The stretching/shrinking operations leave

the channel graph isomorphic to its initial state since edges or nodes are not deleted or

added. If all components remain in their constrained windows, an isomorphic channel

graph will be generated in the next iteration. In addition, we calculate the object position

which minimizes total wire length. Finally, place noncritical objects at the positions which

minimize deviations from the desired positions yet remain in the valid window. Since the

deviations are minimized at each iteration, convergence is achieved once the channel

graph has been stretched to accommodate the longest path calculations. For this reason,

the channel graph constraints are used after the second iteration. Figure 3.18 shows the

same circuit using channel graph constraints during compaction. As seen in Figure 3.19,

the channel graphs remain isomorphic during placement refinement, and convergence is

achieved.

Figure 3.18 Compaction results using channel graph constraints.

81

Macro Cell Placement and Routing

3.3.3.5 Adaptive Dynamic Wire Length Estimation

TimberWolfMC dynamically estimates the interconnect area required for each macro

cell. In TimberWolfMC version 1.0, the area estimate varies according to core coordinates

and pin density,

(3.19)

where is the estimated interconnect area for cell edge i, is a constant, is the aver-

age channel width, is the variation of area as a function of edge x position,

is the variation of area as a function of edge y position, and is the variation in area as

a function of relative pin density [195]. Other wire estimation algorithms have been pro-

posed as well [81][168]. These estimation methods are based on theoretical models. How-

ever, they are inaccurate if the design style violates any of the assumptions of the

theoretical model. For example, the model must be changed if another routing layer is

added. Figure 3.20 and Figure 3.21 show an instance where the theoretical model grossly

overestimates the routing area needed for cell C1. This overestimation leads to a subopti-

mal final placement. In this case, the large number of pins on one edge yields a large area

estimate. However, many pins on this cell are connected to the same signal and may be

routed using only one track. Although this model could be modified to handle such cases,

Figure 3.19 The placement topology is preserved. The left and right channel graphs are isomorphic.

ai 1
2
---αCWfx xi() fy yi() fp i()=

ai α CW

fx xi() fy yi()

fp i()

82

Macro Cell Placement and Routing

no theoretical model can predict all the possible routing scenarios accurately.

The solution is to use a general statistical model which adapts for every circuit. We

define the estimated interconnect area for cell edge i to be

C

Figure 3.20 Inaccurate modeling. TimberWolfMC version 1 overestimates the routing area needed for
cell C1.

Cell area

Routing
Estimate

C

Figure 3.21 Placement after global routing using original wire estimator. Notice the gross inaccuracy
in the estimation of the routing area for cell C1.

Cell area

Routing
Estimate

Actual
Routing

83

Macro Cell Placement and Routing

(3.20)

where c0...c5 are constants, x and y are the normalized chip coordinates, i. e.

, and p is the number of pins in the channel. To obtain the model con-

stants: place the circuit using a 10x annealing schedule and the theoretical estimation

model. This will give a realistic upper bound on the routing area. Perform global routing

and/or detail routing to calculate routing areas. Use a least squares method to fit the data to

Equation 3.20 [173]. Subsequent placements are performed using the statistical model.

After each TimberWolf run, the statistical model is refit allowing TimberWolf to learn

from the previous executions. In addition, the statistical model adapts to any design style

and routing technology. Figure 3.23 and Figure 3.24 show the same example using the sta-

tistical wire estimator. In this case, the statistical model accurately estimates the routing

Figure 3.22 Inaccurate wiring estimation leads to poor area efficiency. White space around cells is
unused area.

Cell area

Actual
Routing

i c0 c1 x⋅ c2 x2⋅ c3 y⋅ c4 y2⋅ c5 p⋅+ + + + +=

x y, 0.0 1.0,[]∈

84

Macro Cell Placement and Routing

area required. The resulting final placement is the minimum area topology. In Timber-

WolfMC, the 10x run is transparent to the user. That is, the user will notice that the second

and subsequent runs are slightly faster than the first.

3.3.3.6 Detailed Routing

Next, we perform detailed routing using TimberWolfDR, our derivative of the Mighty

maze router[207]. TimberWolfDR has been modified to allow routing to cells within a

switchbox by using macro objects to model the rectilinear cells. The macro objects act as

Cell area

Routing
Estimate

Actual
Routing

Figure 3.23 Placement after global routing using the statistical wire estimator.

Cell area

Actual
Routing

Figure 3.24 Accurate wiring estimation reduces the amount of unused area. This is the minimum area
placement for this example. The remaining white space does not impact chip area.

85

Macro Cell Placement and Routing

“keep out” regions but allow connections to pins on their boundaries. Each “keep out”

region is specified on a per layer basis.

At this point we depart from the classical divide-and-conquer methods of routing

macro cell layouts where routing is done channel by channel. Since placement refinement

utilizes accurate density information, the cells can be spaced to accommodate the routing

area avoiding the need for post-routing compaction. Since we route the macro cell design

as obstacles (macro objects) within a switchbox, we eliminate the classically difficult

problem of defining channels for detailed routing. In addition, we also avoid the equally

difficult problem of determining a routing order for the defined channels.

In order to coerce the routing segments into the regions determined by the global

router, we introduce pseudopins at the channel junctions as determined by the global

router. Like signal pins, pseudopins are ports which participate as sources for wave propa-

gation in the TimberWolfDR maze router, but unlike signal pins, they are not required to

exist in the final interconnection of pins. Since pseudopins are sources for the wave propa-

gation, regions containing pseudopins are favored in the final route.

For each net, pseudopins are added at every channel junction in the net's global routing

tree. Figure 3.25 shows an example of pseudo pin placement. The pseudopins are ordered

across the ends of each of the channels using Groeneveld's algorithm [78] to minimize

unnecessary twisting of the wires. Our extensions to this algorithm perform a topological

sort on the global routing trees to find the ordering of the pseudopins which results in the

most planar routing. The ordering shown is planar. If pseudopins N5 and N2 were to be

reversed at the top of the lower vertical channel, significant area would be wasted due to

wire crossings.

Since the detailed router uses these pseudopins as a starting point for its search, and

the pseudopins are placed at the junctions of the global routing tree for each net, the detail

86

Macro Cell Placement and Routing

router will follow the map laid out by the global router. In addition, the placement of the

pseudopins insures the minimum amount of wire crossovers.

Since TimberWolfDR is a maze router, the memory requirements are proportional to

the product of the horizontal and vertical grids. We therefore use a local grid approach to

minimize storage requirements. In particular, grid lines appear only at pin positions, and in

addition, the number of grid lines added per channel equals the channel density. The rela-

tively sparse grid allows maze-type routers such as TimberWolfDR to be able to route an

(a)

(b)

Figure 3.25 An example of pseudo pin placement. (a) Dark shaded areas are the macro cells. The
hatched rectangles are the critical regions. The thick solid lines are channels and the dots denote a
channel junction. (b) The dotted lines denote the path the global router has determined for the nets.
The dark shaded areas are the macro cells.

N1 N2N3N5 N4

N5

N4N3N1

N2
N5

87

Macro Cell Placement and Routing

entire chip as a single switchbox. Figure 3.26 shows the results of applying the local grid

approach to a placement of macro cells.

The final detailed routing for the small example appears in Figure 3.27. Since all cells

have been spaced at density, subsequent compaction is not needed. In the classical meth-

ods based on channel definition, there is no easy way to avoid routing several very com-

plex channels and switchboxes for this example. This routing methodology avoids this

problem entirely.

Figure 3.26 The local grid lines for a placement of macro cells

88

Macro Cell Placement and Routing

Figure 3.27 An example of the final detailed routing.

89

Macro Cell Placement and Routing

3.4 Results

Table 3.2 shows our result for the ami33 macro cell circuit from the MCNC bench-

mark set. It is important to note that both the Delft P&R and the Mosaico systems used

interactive manual placement to achieve their results, and Mosaico also used interactive

global routing modifications. Nonetheless, the fully automatic TimberWolf result is better

in terms of chip area and the total wire length (after detailed routing). Figure 3.28 shows

the final result for the ami33 macro cell circuit.

90

Macro Cell Placement and Routing

Table 3.2 Previously published results for the ami33 benchmark circuit [20].

System Chip Area Total Wire Length

TimberWolf 2.57 105

Delft P&R 2.60 152

Mosaico 2.71 118

Bear 2.83 131

Industrial 1 2.94 125

Industrial 2 3.12 135

Figure 3.28 Final placement and routing of ami33 benchmark circuit.

91

Macro Cell Placement and Routing

3.5 Conclusions

The keys to the consistent performance displayed by TimberWolfMC version 2.0 are

new advances in the implementation of simulated annealing, a new method for placement

refinement, and a new method for detailed routing. In particular, we have attempted to

optimize the relative weighting between the primary objective term and the penalty func-

tion terms in the cost function. Furthermore, we have utilized the results of a theoretically

derived statistical annealing schedule. We have placed emphasis on selecting new configu-

rations which have a reasonable chance of acceptance. A new statistical wire estimation

algorithm has been developed which reduces the amount of unused routing area. A new

placement refinement method has been developed for rectilinear cells which spaces the

cells at density avoiding the need for post-routing compaction. In addition, the placement

refinement method uses previously generated constraints to maintain the topology. A new

detailed routing method has been developed which avoids the classically difficult problem

of defining channels for detailed routing, and in addition, avoids the equally difficult prob-

lem of defining a routing order for the defined channels. We have obtained the best result

for the ami33 benchmark circuit. Furthermore, our result is better than the best of the pre-

viously reported manual placements.

